歡迎來(lái)到中山普納斯能源公司官網(wǎng)!
服務(wù)熱線(xiàn): 13560638045|官方微博|在線(xiàn)留言|網(wǎng)站地圖|English
鋰離子電池自從進(jìn)入市場(chǎng)以來(lái),以其壽命長(cháng)、比容量大、無(wú)記憶效應等優(yōu)點(diǎn),獲得了廣泛的應用。但鋰離子電池低溫使用存在容量低、衰減嚴重、循環(huán)倍率性能差、析鋰現象明顯、脫嵌鋰不平衡等問(wèn)題。然而,隨著(zhù)應用領(lǐng)域不斷拓展,鋰離子電池的低溫性能低劣帶來(lái)的制約愈加明顯。
據悉,在-20℃時(shí)鋰離子電池放電容量只有室溫時(shí)的31.5%左右。傳統鋰離子電池工作溫度在-20~+55℃之間。但是在航空航天、軍工、電動(dòng)車(chē)等領(lǐng)域,要求電池能在-40℃正常工作。因此,改善鋰離子電池低溫性質(zhì)具有重大意義。
一、制約鋰離子電池低溫性能的因素
1、低溫環(huán)境下,電解液的黏度增大,甚至部分凝固,導致鋰離子電池的導電率下降。
2、低溫環(huán)境下電解液與負極、隔膜之間的相容性變差。
3、低溫環(huán)境下鋰離子電池的負極析出鋰嚴重,并且析出的金屬鋰與電解液反應,其產(chǎn)物沉積導致固態(tài)電解質(zhì)界面(SEI)厚度增加。
4、低溫環(huán)境下鋰離子電池在活性物質(zhì)內部擴散系統降低,電荷轉移阻抗(Rct)顯著(zhù)增大。
二、鋰離子電池正極材料的低溫特性
1、層狀結構正極材料的低溫特性
層狀結構,既擁有一維鋰離子擴散通道所不可比擬的倍率性能,又擁有三維通道的結構穩定性,是最早商用的鋰離子電池正極材料。其代表性物質(zhì)有LiCoO2、Li(Co1-xNix)O2和Li(Ni,Co,Mn)O2等。
以L(fǎng)iCoO2/MCMB為研究對象,測試了其低溫充放電特性。
結果顯示,隨著(zhù)溫度的降低,其放電平臺由3.762V(0℃)下降到3.207V(–30℃);其電池總容量也由78.98mA·h(0℃)銳減到68.55mA·h(–30℃)。
2、尖晶石結構正極材料的低溫特性
尖晶石結構LiMn2O4正極材料,由于不含Co元素,故而具有成本低、無(wú)毒性的優(yōu)勢。
然而,Mn價(jià)態(tài)多變和Mn3+的Jahn-Teller效應,導致該組分存在著(zhù)結構不穩定和可逆性差等問(wèn)題。
不同制備方法對LiMn2O4正極材料的電化學(xué)性能影響較大,以Rct為例:高溫固相法合成的LiMn2O4的Rct明顯高于溶膠凝膠法合成的,且這一現象在鋰離子擴散系數上也有所體現。究其原因,主要是由于不同合成方法對產(chǎn)物結晶度和形貌影響較大。
3、磷酸鹽體系正極材料的低溫特性
LiFePO4因絕佳的體積穩定性和安全性,和三元材料一起,成為目前動(dòng)力電池正極材料的主體。磷酸鐵鋰低溫性能差主要是因為其材料本身為絕緣體,電子導電率低,鋰離子擴散性差,低溫下導電性差,使得電池內阻增加,所受極化影響大,電池充放電受阻,因此低溫性能不理想。
谷亦杰等在研究低溫下LiFePO4的充放電行為時(shí)發(fā)現,其庫倫效率從55℃的100%分別下降到0℃時(shí)的96%和–20℃時(shí)的64%;放電電壓從55℃時(shí)的3.11V遞減到–20℃時(shí)的2.62V。
利用納米碳對LiFePO4進(jìn)行改性,發(fā)現,添加納米碳導電劑后,LiFePO4的電化學(xué)性能對溫度的敏感性降低,低溫性能得到改善;改性后LiFePO4的放電電壓從25℃時(shí)的3.40V下降到–25℃時(shí)的3.09V,降低幅度僅為9.12%;且其在–25℃時(shí)電池效率為57.3%,高于不含納米碳導電劑的53.4%。
近來(lái),LiMnPO4引起了人們濃厚的興趣。研究發(fā)現,LiMnPO4具有高電位(4.1V)、無(wú)污染、價(jià)格低、比容量大(170mAh/g)等優(yōu)點(diǎn)。然而,由于LiMnPO4比LiFePO4更低的離子電導率,故在實(shí)際中常常利用Fe部分取代Mn形成LiMn0.8Fe0.2PO4固溶體。
三、鋰離子電池負極材料的低溫特性
相對于正極材料而言,鋰離子電池負極材料的低溫惡化現象更為嚴重,主要有以下3個(gè)原因:
1、低溫大倍率充放電時(shí)電池極化嚴重,負極表面金屬鋰大量沉積,且金屬鋰與電解液的反應產(chǎn)物一般不具有導電性;
2、從熱力學(xué)角度,電解液中含有大量 C–O、C–N 等極性基團,能與負極材料反應,所形成的 SEI 膜更易受低溫影響;
3、碳負極在低溫下嵌鋰困難,存在充放電不對稱(chēng)性。
四、低溫電解液的研究
電解液在鋰離子電池中承擔著(zhù)傳遞 Li+ 的作用,其離子電導率和 SEI 成膜性能對電池低溫性能影響顯著(zhù)。判斷低溫用電解液優(yōu)劣,有3個(gè)主要指標:離子電導率、電化學(xué)窗口和電極反應活性。而這3個(gè)指標的水平,在很大程度上取決于其組成材料:溶劑、電解質(zhì)(鋰鹽)、添加劑。因此,電解液的各部分低溫性能的研究,對理解和改善電池的低溫性能,具有重要的意義。
EC 基電解液低溫特性相比鏈狀碳酸酯而言,環(huán)狀碳酸酯結構緊密、作用力大,具有較高的熔點(diǎn)和黏度。但是、環(huán)狀結構帶來(lái)的大的極性,使其往往具有很大的介電常數。EC 溶劑的大介電常數、高離子導電率、絕佳成膜性能,有效防止溶劑分子共插入,使其具有不可或缺的地位,所以,常用低溫電解液體系大都以EC為基,再混合低熔點(diǎn)的小分子溶劑。
鋰鹽是電解液的重要組成。鋰鹽在電解液中不 僅能夠提高溶液的離子電導率,還能降低 Li+ 在溶液中的擴散距離。一般而言,溶液中的Li+濃度越大,其離子電導率也越大。但電解液中的鋰離子濃度與鋰鹽的濃度并非呈線(xiàn)性相關(guān),而是呈拋物線(xiàn)狀。這是因為,溶劑中鋰離子濃度取決于鋰鹽在溶劑中的離解作用和締合作用的強弱。
除電池組成本身外,在實(shí)際操作中的工藝因素, 也會(huì )對電池性能產(chǎn)生很大影響。
1、制備工藝。電極荷載及 涂覆厚度對 LiNi0.6Co0.2Mn0.2O2 /Graphite 電池低溫性能的影響發(fā)現,就容量保持率而言,電極荷載 越小,涂覆層越薄,其低溫性能越好。
2、充放電狀態(tài)。低溫充放電狀態(tài)對電池循環(huán)壽命的影響,發(fā)現,放電深度較大時(shí),會(huì )引起較大的容量損失,且降低循環(huán)壽命。
3、其它因素。電極的表面積、孔徑、電極密度、電極與電解液的潤濕性及隔膜等,均影響著(zhù)鋰離子電池的低溫性能。另外,材料和工藝的缺陷對電池低溫性能的影響也不容忽視。
五、總結
為保證鋰離子電池的低溫性能,需要做好以下幾點(diǎn):
(1) 形成薄而致密的 SEI 膜;
(2) 保證 Li+ 在活性物質(zhì)中具有較大的擴散系數;
(3) 電解液在低溫下具有高的離子電導率。
13560638045 服務(wù)熱線(xiàn)